Persepsi Generasi Z terhadap Pemanfaatan Artificial Intelligence (AI) dalam Meningkatkan Kinerja Karyawan di Tempat Kerja
DOI:
https://doi.org/10.63822/d11c2792Keywords:
Generasi Z, Kecerdasan Buatan (AI), Kinerja KaryawanAbstract
Penelitian ini bertujuan untuk menyelidiki persepsi Generasi Z tentang pemanfaatan Artificial Intelligence (AI) dalam meningkatkan kinerja di tempat kerja. Metode penelitian ini menggunakan pendekatan kualitatif menggunakan teknik Focus Group Discussion (FGD), yang terdiri dari 3 kelompok FGD, masing-masing terdiri dari 5 individu Generasi Z yang sudah bekerja dan memanfaatkan Artificial Intelligence (AI) untuk membantu tugasnya. Melalui Focus Group Discussion (FGD), diidentifikasi bahwa berbagai jenis AI yang digunakan berdampak pada peningkatan kinerja karyawan di tempat kerja. Hasilnya menunjukkan AI membantu mempercepat penyelesaian tugas dan meningkatkan efisiensi, tetapi verifikasi keakuratan informasi AI ditekankan. Dalam pengambilan keputusan, AI dianggap sebagai alat untuk analisis data, meskipun peran intuisi manusia tetap penting. AI juga memiliki potensi untuk memfasilitasi pertukaran pengetahuan, meskipun akurasi prompt dan konteks spesifik dari bidang pekerjaan menjadi pertimbangan. Selain itu, AI meningkatkan produktivitas kerja di Generasi Z, tetapi tidak dapat menghilangkan campur tangan manusia di lingkungan kerja.
Downloads
References
Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), 1–22. https://doi.org/10.3390/jpm13060951
Alsafadi, Y., & Altahat, S. (2021). Human Resource Management Practices and Employee Performance: The Role of Job Satisfaction. Journal of Asian Finance, Economics and Business, 8(1), 519–529. https://doi.org/10.13106/jafeb.2021.vol8.no1.519
Azmi, N. F., Hasan, H., & Yusoff, M. N. H. (2023). An Empirical Study of Governance Challenges: Lesson Learnt from Australian Islamic Charitable Institution. In Studies in Systems, Decision and Control (Vol. 216). https://doi.org/10.1007/978-3-031-10212-7_25
Barhate, B., & Dirani, K. M. (2022). Career aspirations of generation Z: a systematic literature review. European Journal of Training and Development, 46(1–2), 139–157. https://doi.org/10.1108/EJTD-07-2020-0124
Benítez-Márquez, M. D., Sánchez-Teba, E. M., Bermúdez-González, G., & Núñez-Rydman, E. S. (2022). Generation Z Within the Workforce and in the Workplace: A Bibliometric Analysis. Frontiers in Psychology, 12(February), 1–16. https://doi.org/10.3389/fpsyg.2021.736820
Bickley, S. J., Chan, H. F., & Torgler, B. (2022). Artificial intelligence in the field of economics. Scientometrics, 127(4), 2055–2084. https://doi.org/10.1007/s11192-022-04294-w
Dewi, N., Sudrajat, A., Chairunnisa, G., Assyifa, S. N., Wulandari, N., & Rimadias, S. (2024). Stream to Shop: Perilaku Belanja Gen Z Pada Social Commerce dan Apa Yang Paling Memikat Mereka. Jurnal Manajemen Dan Pemasaran Digital, 2(3), 257–272. https://siberpublisher.org/index.php/JMPD/article/view/212
Haque, M. G., Madihah, S., Rimadias, S., & Fitriah, H. (2021). PT CIMB NIAGA TBK BERSAING MENJADI PEMENANG PEMASARAN KPR SYARIAH: SEBUAH TINJAUAN STRATEJIK Marissa. Jurnal Ekonomi Efektif, 3(2), 176–184.
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001
Leslie, B., Anderson, C., Bickham, C., Horman, J., Overly, A., Gentry, C., Callahan, C., & King, J. (2021). Generation Z Perceptions of a Positive Workplace Environment. Employee Responsibilities and Rights Journal, 33(3), 171–187. https://doi.org/10.1007/s10672-021-09366-2
Malhotra, G., & Kharub, M. (2024). Elevating logistics performance: harnessing the power of artificial intelligence in e-commerce. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2024-0046
Nurcahyo, S. A., & Wikaningrum, T. (2020). Peran Knowledge Sharing, Learning Organization Dan Kapabilitas Inovasi Individual Terhadap Kinerja Karyawan. Jurnal Ekonomi Dan Bisnis, 21(2), 84. https://doi.org/10.30659/ekobis.21.2.84-96
Palos-Sánchez, P. R., Baena-Luna, P., Badicu, A., & Infante-Moro, J. C. (2022). Artificial Intelligence and Human Resources Management: A Bibliometric Analysis. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2145631
Pungkasan, G., Asif Khan, M., Rianto, M. R., Woestho, C., Bukhari, E., Ekonomi, F., Bisnis, D., Bhayangkara, U., & Raya, J. (2024). Pengaruh Gaya Kepemimpinan, Stres Kerja dan Lingkungan Kerja terhadap Kinerja Karyawan Pada PT. Bakrie Pipe Industries. Indonesian Journal of Economics and Strategic Management (IJESM, 2(1), 786–796.
Racolţa-Paina, N. D., & Irini, R. D. (2021). Generation z in the workplace through the lenses of human resource professionals – a qualitative study. Quality - Access to Success, 22(183), 78–85.
Rimadias, S. (2024). Empowering Futures: a Business Model Canvas (BMC) Approach to Enhancing Productivity in Retirement for KMS PT Indofood CBP Sukses Makmur Tbk. Cooperative Members. Asian Journal of Community Services, 3(1), 77–84. https://doi.org/10.55927/ajcs.v3i1.7599
Rimadias, S. (2025). Key Drivers of AI Utilization for Environmental Sustainability a mong Indonesia ’ s Educated Gen Z. Asian Journal of Applied Business and Management (AJABM), 4(1), 211–228. https://doi.org/https://doi.org/10.55927/ajabm.v4i1.40
Setiyawan, N. L., & Rimadias, S. (2022). Work-Family Conflict and Family-Work Conflict as Mediating Variables in Workload and Social Support for Work Stress (The Case of Female Workers in Creative Indus-tries). Jurnal Ilmu Manajemen & Ekonomika, 14(1), 17. https://doi.org/10.35384/jime.v14i1.289
Siswadi, A. (2023). Survei Populix: 55 Persen Pekerja Khawatir Digantikan Teknologi Artificial Intelligence. Tekno.Tempo.Co. https://tekno.tempo.co/read/1803643/survei-populix-55-persen-pekerja-khawatir-digantikan-teknologi-artificial-intelligence
Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212–227. https://doi.org/10.1111/jpim.12523
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
Woschank, M., Rauch, E., & Zsifkovits, H. (2020). A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093760
Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green artificial intelligence: towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability (Switzerland), 13(16), 1–14. https://doi.org/10.3390/su13168952
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Santi Rimadias, Fahiya Arsy H, Sayidina Emir, Rana Nabila (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.