

elSSN <u>3089-7734</u>; plSSN <u>3089-7742</u> Vol. 1, No. 5, Tahun <u>2025</u> doi.org/10.63822/1myv4f53

Hal. 2909-2914

Analisis Sistem Saluran Drainase dalam Upaya Penanggulangan Banjir di Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan

Dwi Rizki Rahmawati¹, Arris Maulana², Henita Rahmayanti³

Program Studi S1 Pendidikan Teknik Bangunan, Fakultas Teknik, Universitas Negeri Jakarta^{1,2,3}

*Email Korespodensi: dwirizki2603@gmail.com

Sejarah Artikel:

 Diterima
 01-08-2025

 Disetujui
 07-08-2025

 Diterbitkan
 09-08-2025

ABSTRACT

This study aims to analyze the condition of the drainage system along Jalan Ciledug Raya, located in Kelurahan Cipulir, Kecamatan Kebayoran Lama, South Jakarta, as part of efforts to mitigate flooding. Flooding in this area frequently occurs, particularly during the rainy season with high rainfall intensity. The research employed a quantitative descriptive approach using both primary and secondary data analysis techniques. Rainfall data were obtained from the Kemayoran Station and South Tangerang Climatology Station over a 10-year period (2015–2024). Rainfall analysis utilized the Log Pearson Type III distribution method, while the planned flood discharge (Qr) was calculated using the Rational Method. The results showed that the capacity of the existing drainage channel (Qs), at 5.379 m³/s, is lower than the planned flood discharge, which is 8.215 m³/s for a 2-year return period and 9.395 m³/s for a 5-year return period. These findings indicate that the current drainage infrastructure is insufficient to accommodate the planned flood discharge, resulting in surface water accumulation. Additional contributing factors include sedimentation and low public awareness regarding environmental cleanliness.

Keywords: Urban Drainage, Flood, Design Discharge, Jalan Ciledug Raya, Extreme Rainfall

ABSTRAK

Penelitian ini bertujuan untuk menganalisis kondisi sistem saluran drainase di Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan dalam upaya penanggulangan banjir. Permasalahan banjir pada wilayah ini kerap terjadi terutama saat musim hujan dengan curah hujan tinggi. Metode yang digunakan adalah pendekatan deskriptif kuantitatif dengan teknik analisis data primer dan sekunder. Data curah hujan diperoleh dari Stasiun Kemayoran dan Stasiun Klimatologi Tangerang Selatan selama 10 tahun (2015–2024). Analisis curah hujan menggunakan metode distribusi Log Pearson III, dan perhitungan debit banjir rencana (Qr) menggunakan metode Rasional. Hasil penelitian menunjukkan bahwa kapasitas saluran drainase eksisting (Qs) sebesar 5,379 m³/detik lebih kecil dari debit banjir rencana, yaitu 8,215 m³/detik untuk periode ulang 2 tahun dan 9,395 m³/detik untuk periode ulang 5 tahun. Kondisi ini mengindikasikan bahwa saluran drainase belum mampu menampung debit banjir secara optimal sehingga menyebabkan genangan. Faktor penyumbang lain adalah sedimentasi dan rendahnya kesadaran masyarakat dalam menjaga kebersihan lingkungan.

Kata kunci: Drainase, banjir, debit rencana, Log Pearson III, Jalan Ciledug Raya

Bagaimana Cara Sitasi Artikel ini:

Dwi Rizki Rahmawati, Arris Maulana, & Henita Rahmayanti. (2025). Analisis Sistem Saluran Drainase dalam Upaya Penanggulangan Banjir di Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan. Jejak Digital: Jurnal Ilmiah Multidisiplin, 1(5), 2909-2914. https://doi.org/10.63822/1myv4f53

PENDAHULUAN

Jakarta merupakan kota yang berada di dataran rendah, yang tidak terlepas dari bencana banjir yang bisa terjadi kapan saja. Banjir merupakan suatu bentuk fenomena bencana alam yang secara signifikan berkorelasi dengan tingkat kerusakan yang terjadi, baik dalam aspek kehidupan sosial maupun kerugian material (Nurdin & G, 2020). Keterbatasan kapasitas tampung saluran drainase menyebabkan proses pembuangan air berlangsung secara lambat, sehingga durasi genangan banjir menjadi lebih panjang (Gunawan et al., 2021).

Berdasarkan Badan Penanggulangan Bencana Daerah (BPBD) DKI Jakarta salah satu ruas jalan yang tergenang yaitu Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan dengan ketinggian banjir sedalam 20 - 40 cm. Jalan Ciledug Raya merupakan salah satu ruas jalan utama yang terletak di wilayah DKI Jakarta, dengan panjang sekitar 4,3 kilometer, membentang dari Kebayoran Lama Utara, Jakarta Selatan hingga Kreo Selatan, Kecamatan Larangan, Kota Tangerang. Jalan ini berfungsi sebagai koridor utama penghubung antara Kota Jakarta Selatan dan Kota Tangerang, yang menyebabkan tingginya intensitas lalu lintas dan kemacetan hampir setiap hari. Pada musim hujan, jalan ini kerap mengalami banjir akibat tingginya intensitas curah hujan, yang berdampak pada terganggunya arus lalu lintas. Kelurahan Cipulir, yang berada di Kecamatan Kebayoran Lama, merupakan kawasan dengan tingkat kepadatan permukiman yang tinggi dan termasuk wilayah yang rawan terhadap banjir atau genangan. Berdasarkan informasi dari portal berita detik.com, pada musim hujan tahun 2022, ketinggian genangan air di beberapa titik ruas Jalan Ciledug Raya mencapai antara 20 hingga 40 cm.

Di beberapa titik di Jalan Ciledug Raya, Sebagian masyarakat masih memiliki persepsi bahwa badan air dan saluran sungai dapat dijadikan sebagai tempat pembuangan sampah, yang pada akhirnya menyebabkan terjadinya penyumbatan pada sistem drainase. Saluran drainase yang terdapat di sepanjang ruas jalan ini termasuk dalam kategori saluran terbuka dan tertutup yang memiliki bentuk persegi panjang yang terus mengalami pendangkalan. Pendangkalan yang disebabkan akibat sedimentasi, sampah domestik dan material penyerta lainnya yang menyebabkan debit air saluran draianse menjadi tidak bebas mengalir (Subhy, 2021), sehingga menyebabkan air meluap ke ruas Jalan Ciledug Raya.

Seperti pada penelitian (Kusmaryono & Budiman, 2023) dimana Banjir umumnya terjadi akibat intensitas curah hujan yang tinggi atau durasi hujan yang berkepanjangan, sementara kapasitas saluran drainase tidak memadai untuk menampung kelebihan air, baik yang berasal dari permukaan tanah maupun air bawah permukaan. Jalan Ciledug Raya menjadi objek yang relevan untuk dianalisis mengingat data dari Badan Penanggulangan Bencana Daerah (BPBD) DKI Jakarta menunjukkan bahwa ruas jalan tersebut termasuk salah satu wilayah di Jakarta Selatan yang sering mengalami genangan banjir pada saat musim hujan. Daerah Jalan Ciledug Raya Kelurahan Cipulir secara universal digunakan sebagai akses jalan utama, pertokoan, dan perkantoran. Apabila banjir terus terjadi dan menggenangi wilayah ini, maka akan berdampak negatif terhadap aktivitas perekonomian setempat yang berpotensi mengalami hambatan. Sehingga diperlukannya analisis sistem saluran drainase terhadap permasalahan banjir di Jalan Ciledug Raya, Kelurahan Cipulir agar saluran drainase dapat berfungsi secara optimal dan mengurangi risiko terjadinya bencana banjir di ruas jalan tersebut.

METODE

Penelitian ini menggunakan metode deskriptif kuantitatif untuk menganalisis sistem saluran drainase yang ada di Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan.

Penelitian dilaksanakan dalam rentang waktu kurang lebih satu bulan, mencakup kegiatan observasi lapangan dan analisis data. Subjek utama dalam penelitian ini adalah kondisi fisik saluran drainase dan data curah hujan yang diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG). Jenis data yang digunakan terdiri dari data primer dan data sekunder. Data primer diperoleh melalui pengamatan langsung di lapangan serta pengukuran fisik saluran drainase, seperti lebar, kedalaman, kemiringan saluran, jenis material saluran, serta titik-titik lokasi rawan banjir. Data sekunder meliputi data curah hujan harian selama 10 tahun (2015–2024) dari Stasiun BMKG Kemayoran dan Stasiun Klimatologi Tangerang Selatan, peta topografi wilayah penelitian, serta dokumen pendukung dari instansi terkait. Instrumen yang digunakan dalam pengumpulan data antara lain lembar observasi, alat dokumentasi (kamera digital), meteran, dan alat pengukur kedalaman untuk mendukung penilaian kondisi fisik saluran drainase. Analisis data dilakukan dengan penentuan intensitas curah hujan yang diperoleh dari 2 stasiun curah hujan terdekat dari lokasi penelitian yaitu Stasiun Kemayoran dan Stasiun Klimatologi Tangerang Selatan.

HASIL DAN PEMBAHASAN

Analisis Curah Hujan

Berdasarkan data curah hujan dari Stasiun Kemayoran dan Stasiun Klimatologi Tangerang Selatan selama periode 2015 – 2024 dapat diperoleh curah hujan maksimum dengan menggunakan metode ratarata al-jabar.

Stasiun Curah Hujan Maks Tahun **Tangerang Selatan** Kemavoran 2015 416.75 472.6 360.9 516.5 359.4 437.95 2016 478.55 2017 520.8 436.3 303.6 367.4 2018 431.2 2019 327.3 383.8 355.55 2020 332.8 383.8 358.3 604.4 2021 458.7 531.55 2022 578.1 347.6 462.85 2023 561.3 448.2 504.75 500.5 464.3 2024 482.4

Tabel 1. Data Curah Hujan

Penentuan Distribusi Frekuensi

Data curah hujan maksimum dari Stasiun Kemayoran dan Stasiun Klimatologi Tangerang selatan selanjutnya dianalisis menggunakan 4 jenis distribusi yaitu distribusi Normal, distribusi Log Normal, distribusi Log Pearson III dan distribusi Gumbel.

Σ

4396.05

Tabel 2. Penentuan Distribusi Frekuensi

Jenis Distribusi	Persyaratan	Perhitungan	Kesimpulan
Normal	Cs = 0	-0.17	Tidak
	Ck = 3	18.79	Terpenuhi
Log Normal	$Cs = Cv^3 + 3Cv$	-0.56	Tidak
	$Ck = Cv^3 + 6Cv^6 + 15Cv^4 + 16Cv^6 + 3$	19.57	Terpenuhi
Log Pearson III	Cs ≠ 0	-0.56	Tormonybi
	Ck ≠ 0	19.57	Terpenuhi
Gumbel	Cs = 1.1396	-0.17	Tidak
	Ck = 5.40	18.79	Terpenuhi

Merujuk pada hasil yang tercantum dalam table diatas, distribusi yang memenuhi kriteria parameter yang dipersyaratkan adalah Distribusi Log Pearson III.

Uji Chi Kuadrat

Uji Chi Kuadrat dilakukan untuk mengevaluasi kesesuaian antara distribusi teoritis dari persamaan yang dipilih dengan distribusi data sampel yang dianalisis, dengan menggunakan nilai statistik Chi-Kuadrat (X²)

Tabel 3. Uji Chi Kuadrat

Nilai Batas Tiap Kelas	O_i	E_i	$(O_i-E_i)^2$	$(O_i - E_i)^2 / 2.5$
326.215 < X < 384.885	3	2.5	0.25	0.1
384.885 < X < 443.555	2	2.5	0.25	0.1
443.555 < X < 502.225	4	2.5	2.25	0.9
502.225 < X < 560.885	1	2.5	2.25	0.9
Jumlah	10	10	5	2

mengacu pada nilai $\alpha = 5\%$ atau setara dengan 0.05 dan DK = 2, berdasarkan ketetapan pada table Chi Kuadrat maka nilai X^2 tabel = 5.991 dan nilai X^2 hitung = 2, berarti nilai X^2 terhitung lebih kecil dari nilai X^2 tabel sehingga dapat diambil keputusan bahwa metode distribusi Log Pearson III yang dipakai sudah memenuhi syarat dengan curah hujan periode ulang 2 dan 5 tahun.

Menghitung Debit Banjir Rencana (Qr)

Perhitungan debit banjir rencana menggunakan metode rasional, untuk periode ulang 2 tahun dan 5 tahun. Rumus yang digunakan sebagai berikut :

$$Q = 0.002778 . C . I . A$$

Berdasarkan hasil perhitungan sebelumnya, diperoleh nilai koefisien pengaliran (C) sebesar 0.70. Nilai intensitas curah hujan (I) untuk periode ulang 2 tahun sebesar 120.71 mm/jam dan periode 5 tahun 138.04 mm/jam dengan luas aliran 35 ha.

Periode ulang 2 tahun:

 $Q_{r2} = 0.002778 \times 0.70 \times 120.71 \times 35$

 $Q_{r2} = 8.215 \text{ m}^3/\text{detik}$

Periode ulang 5 tahun:

 $Q_{r5} = 0.002778 \, x \, 0.70 \, x \, 138.04 \, x \, 35$

 $Q_{r5} = 9.395 \text{ m}^3/\text{detik}$

Menghitung Kapasitas Saluran Drainase Eksisting

Berdasarkan hasil pengukuran lapangan dan perhitungan dengan metode Manning, dapat dihitung daya tamping debit saluran (Qs) sebagai berikut :

$$Q = A x V$$

$$Q = 1.65 \times 3.26 = 5.379 \text{ m}^3/\text{detik}$$

Berdasarkan hasil perhitungsn yang telah dilakukan, kapasitas tampungan debit saluran (Qs) sebesar 5,379 m³/detik menunjukkan nilai yang lebih rendah dibandingkan dengan debit banjir rencana (Qr), yaitu 8,215 m³/detik untuk periode ulang 2 tahun dan 9,395 m³/detik untuk periode ulang 5 tahun (Qs < Qr). Temuan

ini mengindikasikan bahwa saluran drainase eksisting tidak mampu menampung debit banjir rencana pada kedua periode ulang tersebut.

Faktor Pendukung Lain Terjadinya Banjir

Selain kapasitas saluran yang tidak mencukupi, faktor lain yang turut memperburuk kondisi antara lain:

- 1. Sedimentasi yang menyebabkan penyempitan penampang saluran
- 2. Tumpukan sampah akibat rendahnya kesadaran masyarakat dalam membuang sampah pada tempatnya.
- 3. Pertumbuhan vegetasi liar yang menghambat aliran air
- 4. Topografi di Jalan Ciledug Raya yang merupakan daerah cekungan atau dataran rendah.
- 5. Luapan Kali Pesanggrahan.

KESIMPULAN

Penelitian ini bertujuan untuk menganalisis efektivitas sistem saluran drainase di Jalan Ciledug Raya, Kelurahan Cipulir, Kecamatan Kebayoran Lama, Jakarta Selatan dalam mengatasi permasalahan banjir. Berdasarkan hasil analisis dan observasi lapangan, diperoleh beberapa temuan utama sebagai berikut:

- 1. Debit banjir rencana dihitung menggunakan metode Log Pearson III dan metode Rasional, dengan intensitas curah hujan sebesar 427,39 mm/jam untuk periode ulang 2 tahun dan 488,76 mm/jam untuk periode ulang 5 tahun. Debit banjir rencana masing-masing adalah 8,215 m³/detik dan 9,395 m³/detik.
- 2. Kapasitas saluran drainase eksisting hanya sebesar 5,379 m³/detik, sehingga tidak mampu menampung debit banjir yang terjadi. Ketidaksesuaian antara kapasitas saluran dan debit banjir menyebabkan terjadinya limpasan air ke badan jalan dan menimbulkan genangan.
- 3. Selain kapasitas saluran yang tidak memadai, faktor lain yang memperparah kondisi adalah sedimentasi, penumpukan sampah, serta pertumbuhan tanaman liar di dalam saluran, yang secara signifikan menghambat aliran air.
- 4. Kondisi topografi Jalan Ciledug Raya yang berupa cekungan atau dataran rendah pada titik-titik tertentu. Dalam kondisi hujan ekstrem, potensi luapan air dari Kali Pesanggrahan di sekitar wilayah Cipulir juga dapat memperburuk situasi banjir.

DAFTAR PUSTAKA

- Gunawan, R. A., Solichin, M., & Chandrasasi, D. (2021). Studi Evaluasi dan Perencanaan Sistem Drainase Perkotaan di Kecamatan Garum Kabupaten Blitar Provinsi Jawa Timur. *Jurnal Teknologi Dan Rekayasa Sumber Daya Air*, 1(2), 429–440.
- Kusmaryono, I., & Budiman, R. (2023). Ismono Kusmaryono ANALISIS DAN EVALUASI SALURAN DRAINASE PADA JALAN JAMBORE KELURAHAN CIBUBUR KECAMATAN CIRACAS JAKARTA TIMUR. *JURNAL Sipilkrisna*, 9(1).
- Nurdin, L., & G, D. A. A. (2020). Evaluasi Dan Perbaikan Sistem Drainase Serta Pengendalian Banjir Perkotaan. Evaluasi Dan Perbaikan Sistem Drainase Serta Pengendalian Banjir Perkotaan, 1(01), 11–20.
- Subhy, Y. (2021). Analisis Sistem Drainase Perumahan Di Jalan Damai Kota Samarinda. *Jurnal Keilmuan Teknik Sipil*, 4(1)