Pengaruh Status Quo Bias terhadap Resistensi Pengguna Alat Pembayaran Berbasis RFID di MRT Jakarta

Authors

  • Raka Echa Pratama Universitas Negeri Jakarta Author
  • Diena Noviarini Universitas Negeri Jakarta Author
  • Adnan Kasofi Universitas Negeri Jakarta Author

DOI:

https://doi.org/10.63822/hg08bt04

Keywords:

Status Quo Bias, Switching Costs, Switching Benefits, Perceived Value, User Resistance, RFID Ticketing, MRT Jakarta, Digital Payment Adoption

Abstract

The transformation of digital payment systems in public transportation has encouraged MRT Jakarta to implement Radio Frequency Identification (RFID) technology through the ALLRIDE Charm product. However, the adoption of this technology may generate user resistance. This study aims to analyze the effects of switching costs, switching benefits, and perceived value on user resistance toward the use of the RFID-based payment system ALLRIDE Charm in MRT Jakarta. This research employs a quantitative approach with a causal associative research design. Data were collected from 306 MRT Jakarta users through an online questionnaire using purposive sampling. Data analysis was conducted using Partial Least Squares–Structural Equation Modeling (PLS-SEM) with the assistance of SmartPLS software. The results indicate that switching costs and perceived value have a significant effect on user resistance, while switching benefits do not show a significant effect. These findings suggest that users’ perceptions of switching costs and perceived value are the primary factors influencing resistance to the adoption of RFID-based payment systems. In addition, this study develops an RFID reader application prototype as a practical contribution to support the implementation of ALLRIDE Charm. This research provides theoretical contributions to technology adoption studies in the context of public transportation and practical implications for MRT Jakarta in enhancing user acceptance of RFID-based payment systems.

References

Aghisna, F., Utami, N., & Rinaldi, A. (2025). The impact of smart card-based payment systems on public transport adoption: Evidence from Yogyakarta BRT. Indonesian Journal of Transportation and Society, 5(1), 33–47.

Al-Hawari, M. A., Karameh, H. A., & Al-Qudah, M. A. (2022). Exploring the impact of procedural, financial, and relational switching costs on customer retention in digital services. Journal of Retailing and Consumer Services, 68, 103066.

Anita, N., Maulana, H. A., Eriska, R., & Lusiana, S. (2025). Analisis resistensi pengguna dalam pembayaran digital pada UMKM di Kabupaten Siak. Prosiding Seminar Nasional InTechBiz. Politeknik Negeri Bengkalis.

Antara News. (2025). 21 juta pelanggan gunakan layanan MRT Jakarta hingga Juni 2025. Diakses dari https://www.antaranews.com/berita/4975033/21-juta-pelanggan-gunakan-layanan-mrt-jakarta-hingga-juni-2025

Antara News. (2025). Jumlah penumpang MRT hingga Transjakarta turun pada Juni 2025. Diakses dari https://www.antaranews.com/berita/5008557/jumlah-penumpang-mrt-hingga-transjakarta-turun-pada-juni-2025

Anwar, R., Sari, D., & Prabowo, M. (2020). Electronic payment integration for smart public transportation in Jakarta. Journal of Urban Mobility Studies, 12(3), 55–68.

Ardi, R. (2021). Public transport and urban mobility in Jakarta: The case of MRT integration. Universitas Indonesia.

Badan Pusat Statistik. (2022). Statistik pemuda Indonesia 2022. Badan Pusat Statistik.

Bannister, F., & Connolly, R. (2014). ICT, public values and transformative government: A framework and programme for research. Government Information Quarterly, 31(1), 119–128.

Bappenas. (2022). Kajian mobilitas penduduk perkotaan di Indonesia. Kementerian PPN/Bappenas.

Burnham, T. A., Frels, J. K., & Mahajan, V. (2023). Consumer switching costs: A typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2), 109–126.B2B Daily. (2025). MRT Jakarta mulai uji coba sistem pembayaran QRIS Tap berbasis NFC. Diakses dari https://www.b2bdaily.id/mrt-jakarta-uji-coba-qris-tap-nfc

BCG. (2024). Southeast Asia consumer sentiment report 2024. Boston Consulting Group.

Cao, Q., Wang, X., & Hsu, C.-L. (2022). Investigating customer behavior of using contactless payment in China: A comparative study of facial recognition payment and mobile QR-code payment. Sustainability, 14(12), 7150. https://doi.org/10.3390/su14127150

Chen, P. Y., & Hitt, L. M. (2002). Measuring switching costs and the determinants of customer retention in Internet-enabled businesses: A study of the online brokerage industry. Information Systems Research, 13(3), 255–274.

Cheng, Y., Chang, C. C., & Lee, H. C. (2020). Psychological switching costs and user inertia in the adoption of digital platforms. Computers in Human Behavior, 112, 106479.

Creswell, J. W., & Creswell, J. D. (2022). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (6th ed.). Thousand Oaks, CA: Sage.

Currie, G., & Delbosc, A. (2017). Understanding public transport performance using new urban mobility indicators. Transportation Research Part A: Policy and Practice, 103, 47–59.

Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. International Journal of Information Management, 43, 272–283.

Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.

Heidenreich, S., Kraemer, T., & Handrich, M. (2022). The influence of status quo bias on technology adoption in digital transformation: An integrative model and empirical evidence. Technological Forecasting and Social Change, 180, 121–138.

Herlina, Suhardi, N., Astuti, N., & Hamdan. (2025). QRIS adoption determinants: Analysis of the role of ease of use, trust, and promotion with user satisfaction as an intervening. SIBATIK: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, 4(4). https://doi.org/10.54443/sibatik.v4i4.2651

Hirschheim, R., & Newman, M. (1988). Information systems and user resistance: Theory and practice. The Computer Journal, 31(5), 398–408.

HSS Communications (2023). Understanding the moderated-mediation effects of switching costs on service value and repurchase intention. Humanities and Social Sciences Communications, 10, 357. DOI: 10.1057/s41599-023-01797-6.

Indriani, R., Valenty, Y. A., & Atmoko, A. D. (2024). Determinants of QRIS adoption among students: The roles of knowledge, ease of use, financial literacy, and perceived benefits. E-Jurnal Akuntansi, 34(10), 16-??. https://doi.org/10.24843/EJA.2024.v34.i10.p16

Information Technology & People (2024). Investigating resistance to IT projects: a conceptual model from a meta-analytic review. DOI: 10.1108/ITP-07-2023-0570.

Jiustian, E., & Yohannis, A. (2024). Enhancing trust in RFID payment systems through blockchain integration. Journal of Digital Finance, 9(2), 122–135.

Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase intentions in services. Journal of Retailing, 76(2), 259-274. DOI: 10.1016/S0022-4359(00)00024-5

Kementerian Perhubungan Republik Indonesia. (2021). Statistik transportasi perkotaan Jabodetabek. Kemenhub RI.

Khalifa, M., & Liu, V. (2007). Online consumer retention: Contingent effects of online shopping habit and online shopping experience. European Journal of Information Systems, 16(1), 1–20.

Khan, A., Rasheed, M. A., & Shahid, M. (2023). Understanding user resistance in digital transformation: The role of perceived usefulness gap and emotional discomfort. Technological Forecasting and Social Change, 192, 123603.

Kim, H. W., & Park, S. C. (2013). The role of perceived value in mobile service adoption: A comparison between South Korea and the United States. International Journal of Information Management, 33(3), 393–400.

Kim, H. W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33(3), 567–582.

Klaus, T., & Blanton, J. E. (2010). User resistance determinants and the psychological contract in enterprise system implementations. European Journal of Information Systems, 19(6), 625–636. https://doi.org/10.1057/ejis.2010.39

Klemperer, P. (1995). Competition when consumers have switching costs: An overview with applications to industrial organization, macroeconomics, and international trade. Review of Economic Studies, 62(4), 515–539.

Koo, C., Chung, N., & Ham, J. (2017). Assessing the user resistance to recommender systems in exhibition. Sustainability, 9(11), 2041. https://doi.org/10.3390/su9112041

Kurniawan, F., & Hidayat, A. (2022). Pengaruh persepsi keamanan dan kepercayaan terhadap niat penggunaan layanan digital banking di Indonesia. Jurnal Ekonomi dan Teknologi Informasi, 10(2), 88–96.

Lapointe, L., & Rivard, S. (2005). A multilevel model of resistance to information technology implementation. MIS Quarterly, 29(3), 461–491.

Lee, J., Kim, Y., & Park, S. (2020). The role of perceived risk and trust in resistance to new digital technology adoption: Evidence from mobile banking users. Computers in Human Behavior, 108, 106–324.

Lin, J., Wang, B., & Wu, Y. (2021). Relational switching costs and user inertia in digital transformation: Evidence from information system migration. Information & Management, 58(6), 103469.

Lin, T., Chen, J., & Huang, Y. (2021). Emotional and rational determinants of user resistance to new technology: The mediating role of technostress. Information Systems Frontiers, 23(6), 1527–1543.

Liu, Y., Wang, F., & Chen, J. (2020). Digital ticketing and urban accessibility: Empirical evidence from Asian metropolitan areas. Journal of Transport Geography, 88, 102–118.

Luo, J., Li, J., & Yang, F. (2021). The role of procedural, financial and relational switching costs in the online booking context. Information Technology & Tourism, 23, 489–508. DOI: 10.1007/s40558-021-00202-9.

McKinsey & Company. (2023). The Indonesian consumer: Value-conscious and digitally savvy. McKinsey Global Institute.

Mobile ID World. (2025). Jakarta MRT introduces ALLRIDE Charm: Stylish RFID-based travel accessory. Diakses dari https://www.mobileidworld.com/jakarta-mrt-allride-charm

Monroe, K. B. (1990). Pricing: Making profitable decisions (2nd ed.). New York, NY: McGraw-Hill.

Nugawela, S., & Sedera, D. (2022). Status Quo Bias in Users Information Systems (IS) Adoption and Continuance Intentions: A Literature Review and Framework. preprint.

Nugroho, A., Hartati, D., & Fadillah, I. (2023). Determinants of consumer intention in using e-wallet services: The case of Indonesia. Journal of Financial Technology and Society, 4(2), 61–77.

Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., & Chang, Y. (2016). An expectation-confirmation model of continuance intention to use mobile instant messaging. Telematics and Informatics, 33(1), 34–47.

Polites, G. L., & Karahanna, E. (2018). The embeddedness of information systems habits in individuals: Implications for the status quo bias in technology adoption. Information Systems Research, 29(3), 549–570.

Putra, R. L., Setiawan, M., Hussein, A. S., & Yuniarinto, A. (2022). Perceived digital value toward continuous intention to use among mobile payment users during pandemic outbreak. Frontiers in Psychology, 13, 892821. https://doi.org/10.3389/fpsyg.2022.892821

Putri, A. R., & Nugroho, Y. (2021). User awareness and acceptance of digital public transport services in Jakarta. Jurnal Sistem Informasi, 17(2), 89–101.

Rahmawati, A., & Fahrullah, M. (2024). Pengaruh promosi dan kemudahan terhadap keputusan penggunaan QRIS di kalangan Generasi Z. Jurnal Ekonomi Digital Indonesia, 6(1), 15–25.

Rahmawati, D., Hidayanto, A. N., & Prabowo, H. (2022). Resistance to digital innovation in public services: Evidence from Indonesia. Jurnal Sistem Informasi, 18(1), 1–13.

Rimbeck, M., Stumpf-Wollersheim, J., & Richter, A. (2025). Understanding user resistance and adoption of Internet of Things technologies: A systematic literature review from a status quo bias perspective. Information Systems Frontiers. https://doi.org/10.1007/s10796-025-10412-3

Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59.

Sari, M., & Wibowo, S. S. (2021). Karakteristik pengguna transportasi umum perkotaan di Jabodetabek. Jurnal Transportasi, 21(3), 145–156.

Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Information Systems Frontiers, 12(5), 501–513.

Sekaran, U., & Bougie, R. (2016). Research Methods for Business: A Skill-Building Approach (7th ed.).

Shiau, W. L., Yuan, Y., Pu, X., Ray, S., & Chen, C. C. (2024). Understanding the adoption of facial recognition payment systems: The roles of perceived benefits and resistance to change. Journal of Business Research, 174, 114513. https://doi.org/10.1016/j.jbusres.2024.114513

Shirish, A., & Batuekueno, B. (2021). Technology renewal, user resistance, and user adoption: Status quo bias theory revisited. Journal of Organizational Change Management, 34(5), 874–891.

Shin, D. H. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adopting online social networks. Interacting with Computers, 22(5), 428–438.

Sochor, J., Arby, H., Karlsson, M., & Sarasini, S. (2018). A topological approach to Mobility as a Service: A user perspective. Transport Policy, 64, 98–107.

Steinberg, L. (2010). A dual systems model of adolescent risk-taking. Developmental Psychobiology, 52(3), 216–224. https://doi.org/10.1002/dev.20445

Sugiyono. (2023). Metode penelitian kuantitatif, kualitatif, dan R&D.

Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of Retailing, 77(2), 203–220.

Tang, L., Luo, J., & Zhang, X. (2019). Digital transformation and transport policy: A review of smart mobility governance. Case Studies on Transport Policy, 7(4), 820–831.

Technovation (2023). An exploratory study on users’ resistance to mobile app updates: Using fsQCA. DOI: 10.1016/j.technovation.2023.102736.

The Jakarta Post. (2025). BI-FAST processes Rp1 quadrillion transactions in July 2025. Diakses dari https://www.thejakartapost.com/business/2025/07/25/bi-fast-transactions.html

Wang, Y., Lo, H. P., & Yang, Y. (2004). An integrated framework for service quality, customer value, satisfaction: Evidence from China's telecommunication industry. Information Systems Frontiers, 6(4), 325–340.

Wani, S., Gupta, P., & Maheshwari, V. (2025). Digital payment adoption and commuter behavior in emerging economies. Journal of Transportation Innovation, 14(2), 44–59.

Xie, J., Ye, L., Huang, W., & Ye, M. (2021). Understanding FinTech platform adoption: Impacts of perceived value and perceived risk. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1893–1911. https://doi.org/10.3390/jtaer16050106

Yoon, C., Lim, J., & Park, M. (2023). The role of switching benefits and user experience in digital payment adoption: A moderated mediation analysis. Technological Forecasting and Social Change, 193, 123721.

Yudhistira, M. H., Tjahjono, T., & Salim, W. (2020). Gender differences in commuting behavior in Jabodetabek. Journal of Urban Studies, 14(2), 67–81.

Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2–22. https://doi.org/10.1177/002224298805200302

Published

2026-01-24

Issue

Section

Articles

How to Cite

Pratama, R. E., Noviarini, D., & Kasofi, A. (2026). Pengaruh Status Quo Bias terhadap Resistensi Pengguna Alat Pembayaran Berbasis RFID di MRT Jakarta. Jejak Digital: Jurnal Ilmiah Multidisiplin, 2(1), 2275-2292. https://doi.org/10.63822/hg08bt04