Penerapan Metode Naive Bayes untuk Klasifikasi Nilai Gizi Makanan
DOI:
https://doi.org/10.63822/jd3nvf12Keywords:
Naive Bayes, nutritional values, food classification, RapidMiner, machine learningAbstract
Nutritional data analysis requires a computational method capable of producing fast, simple, and highly accurate classifications. Although many modern classification algorithms offer strong performance, several of them involve high computational complexity and require larger datasets to achieve optimal results. Naive Bayes is selected in this study because it performs effectively on small to medium-sized datasets, relies on a simple independence assumption between features, and is proven to be stable when processing numerical nutritional attributes such as energy, protein, fat, and carbohydrates. Furthermore, the algorithm consistently produces reliable outcomes when the data structure presents clear inter-class variations, which is commonly found in macronutrient-based food categories. This study aims to apply the Naive Bayes method to classify food categories based on nutritional values using RapidMiner. The research procedure includes data collection, preprocessing, label determination, model construction, and performance evaluation. The results show that the Naive Bayes model achieved an accuracy of 99.86%, with precision, recall, and F1-score values of 1.00, indicating highly optimal classification performance. These findings confirm that Naive Bayes is an appropriate and effective approach for nutritional data analysis, particularly for health applications, food recommendation systems, and nutrition education platforms
References
Fauzi, A., & Ramadhan, F. (2020). Klasifikasi Bahan Makanan Berdasarkan Nilai Gizi Menggunakan Metode Naive Bayes. Jurnal Teknologi Informasi, 14(2), 112–120.
Hasanah, N., & Yusuf, M. (2023). Penerapan Machine Learning pada Analisis Nilai Gizi Menggunakan Pendekatan Probabilistik. Jurnal Ilmu Komputer, 8(1), 45–52.
Rahman, T., Sari, P., & Nugraha, R. (2022). Comparison of Naive Bayes and Decision Tree Algorithms for Food Classification Based on Nutrition. International Journal of Data Mining, 6(3), 77–84.
Widodo, S. (2024). Nutritional Classification Using Machine Learning Methods in Food Science. Journal of Artificial Intelligence Research, 12(1), 33–41.
Han, J., Pei, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.
Witten, I. H., Frank, E., & Hall, M. A. (2017). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Elsevier.
Larose, D. T. (2014). Discovering Knowledge in Data: An Introduction to Data Mining. John Wiley & Sons.
Sharma, R., & Patel, K. (2021). Food Nutrition Classification Using Gaussian Naive Bayes Algorithm. International Journal of Computational Intelligence, 9(2), 98–105.
RapidMiner Documentation. (2023). RapidMiner User Guide and Operator Reference. Retrieved from https://docs.rapidminer.com/
Kementerian Kesehatan RI. (2019). Tabel Komposisi Pangan Indonesia (TKPI). Jakarta: Kemenkes RI.
Putra, D., & Nugroho, A. (2021). Implementasi Algoritma Naive Bayes untuk Klasifikasi Makanan Sehat. Jurnal Teknologi Informasi dan Sains, 5(2), 88–95.
Kumar, A., & Singh, R. (2020). A Study on Bayesian Classification Models for Dietary Pattern Recognition. International Journal of Machine Learning Research, 4(1), 23–31.
Hidayat, M., & Lestari, D. (2022). Analisis Kandungan Gizi Menggunakan Metode Data Mining. Jurnal Sains Komputer, 10(3), 134–142.
Prasetyo, E. (2012). Data Mining: Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: Andi Offset.
Silva, J., & Costa, M. (2021). Automated Nutrient Analysis Based on Statistical Classification Methods. Journal of Food Informatics, 7(2), 56–64.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Salman Nazhiif Al Sarwoto, Hasbi Firmansyah, Wahyu Asriyani (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



