Analisis Klasifikasi Jenis Layanan Ojek Online Menggunakan Algoritma Naive Bayes pada Dataset Dummy Ojol Transactions

Authors

  • Muhammad Fauzan Fadhilah Universitas Pancasakti Tegal Author
  • Hasbi Firmansyah Universitas Pancasakti Tegal Author
  • Wahyu Asriyani Universitas Pancasakti Tegal Author

DOI:

https://doi.org/10.63822/amhgek21

Keywords:

Classification, Data Mining, Digital Transactions, Machine Learning, Naive Bayes, Ojol Services, RapidMiner

Abstract

The rapid growth of online motorcycle taxi (ojol) services as part of the digital economy ecosystem has generated a substantial volume of diverse transaction data. This data holds significant potential for supporting analytical processes such as identifying service usage patterns, predicting user needs, and enabling data-driven decision-making. One essential analytical task is the classification of service types based on available transaction attributes. To address this need, this study conducts a classification analysis of online ride-hailing service types using the Naive Bayes algorithm on the “Ojol Transactions” dummy dataset. The research consists of several stages, including data preprocessing, handling of missing values, target attribute determination, model training, and performance evaluation using RapidMiner. The Naive Bayes algorithm was selected due to its efficiency in classifying structured data and its compatibility with simple probabilistic assumptions. The evaluation results show that the classification model achieved an accuracy of 100%, indicating that all test data were correctly classified. These findings demonstrate the strong potential of the Naive Bayes algorithm for analyzing ride-hailing transaction classifications, particularly when applied to datasets with clearly separated classes.

References

Aggarwal, C. C. (2021). Machine learning for data mining. Springer https://link.springer.com/book/10.1007/978-3-030-59725-8

Alshahrani, A., & Alzahrani, A. (2021). Naive Bayes-based classification for large-scale data analytics. Journal of Big Data, 8(1), 1–18.

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00453-0

Ashari, A., Paryudi, I., & Tjoa, A. M. (2022). Performance comparison between Naive Bayes, decision tree, and k-nearest neighbor in classification problems. Procedia Computer Science, 197, 1–8.

https://www.sciencedirect.com/science/article/pii/S187705092200047X

Han, J., Kamber, M., & Pei, J. (2022). Data mining: Concepts and techniques (4th ed.). Morgan Kaufmann.

https://www.sciencedirect.com/book/9780128117606/data-mining

Kumar, S., Singh, M., & Kaur, P. (2021). Classification techniques for transportation data analytics: A comparative study. IEEE Access, 9, 123456–123468.

https://ieeexplore.ieee.org/document/9448376

Larasati, R., Nugroho, L. E., & Pramono, S. H. (2022). Analisis klasifikasi layanan transportasi daring menggunakan algoritma Naive Bayes. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(2), 345–354.

https://jtiik.ub.ac.id/index.php/jtiik/article/view/5897

Moro, S., Rita, P., & Vala, B. (2021). Predicting ride-hailing service categories using machine learning techniques. Expert Systems with Applications, 168, 114308.

https://www.sciencedirect.com/science/article/pii/S0957417420308356

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2021). Data mining: Practical machine learning tools and techniques (4th ed.). Morgan Kaufmann.

https://www.sciencedirect.com/book/9780128042915/data-mining

Zhang, H., Li, D., & Zhou, Z. H. (2022). Revisiting Naive Bayes for classification: Foundations and advances. ACM Computing Surveys, 55(4), 1–36.

https://dl.acm.org/doi/10.1145/3491100

Published

2025-12-30

Issue

Section

Articles

How to Cite

Muhammad Fauzan Fadhilah, Hasbi Firmansyah, & Wahyu Asriyani. (2025). Analisis Klasifikasi Jenis Layanan Ojek Online Menggunakan Algoritma Naive Bayes pada Dataset Dummy Ojol Transactions. Jejak Digital: Jurnal Ilmiah Multidisiplin, 2(1), 1215-1224. https://doi.org/10.63822/amhgek21