Prediksi Risiko Diabetes Mellitus Menggunakan Algoritma Neural Network

Authors

  • Sukma Ayu Andini Universitas Pancasakti Tegal Author
  • Hasbi Firmansyah Universitas Pancasakti Tegal Author
  • Wahyu Asriyani Universitas Pancasakti Tegal Author
  • Eko Budiraharjo Universitas Pancasakti Tegal Author

DOI:

https://doi.org/10.63822/1kgj8h92

Keywords:

diabetes mellitus, neural network, RapidMiner, RMSE.

Abstract

Diabetes mellitus is classified as a chronic disease with increasing prevalence and the potential to cause various health complications. Therefore, a method capable of predicting diabetes risk early is needed. This study focuses on the implementation of the Neural Network method to predict the potential for diabetes using the Pima Indians Diabetes dataset sourced from the Kaggle platform. The dataset includes eight medical variables, including: pregnancy history, blood glucose concentration, blood pressure level, skinfold thickness, insulin level, Body Mass Index (BMI), diabetes family history, and age. The research procedure includes the initial dataset processing phase, separation of the dataset into training and testing segments, construction of a Neural Network model based on Multilayer Perceptron architecture, and assessment of model performance through the Root Mean Squared Error (RMSE) metric. Model implementation was carried out using RapidMiner software. The test results showed that the Neural Network model produced an RMSE value of 0.440, which indicates a relatively low level of prediction error. Thus, the Neural Network algorithm is considered effective in predicting diabetes risk and has the potential to be used as a decision-making tool for early detection.

 

References

Adi Zaenul Mustaqim, Nurdana Ahmad Fadil, & Dyah Aruming Tyas. (2023). Artificial Neural Networkfor ClassificationTaskin Tabular Datasets and Image Processing: A Systematic Literature Review. JOIN (Jurnal Online Informatika), 8, 158–168.

Emmanuel Okewu, Philip Adewole, Sanjay Misra, Rytis Maskeliunas, & Robertas Damasevicius. (2021). Artificial Neural Networks for Educational Data Mining inHigher Education: A Systematic Literature Review. APPLIED ARTIFICIAL INTELLIGENCE, VOL. 35, 983–1021.

Homepage, J., Purnama, J. J., Rahayu, S., Nurdiani, S., Haryanti, T., & Mayangky, N. A. (2019). IJCIT (Indonesian Journal on Computer and Information Technology) Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Diabetes. In IJCIT (Indonesian Journal on Computer and Information Technology) (Vol. 5, Issue 1). https://creativecommons.org/licenses/by-sa/4.0/

Kannadasan, K., Edla, D. R., & Kuppili, V. (2019). Type 2 diabetes data classification using stacked autoencoders in deep neural networks. Clinical Epidemiology and Global Health, 7(4), 530–535. https://doi.org/10.1016/j.cegh.2018.12.004

Muhammad Rizky, Andri Pramuntadi, Wahit Desta Prastowo, & Deden Hardan Gutama. (2024). Implementasi Metode Deep Neural Network pada Klasifikasi Penyakit Diabetes Melitus Tipe 2. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4, 1043–1050.

Nissar, I., Mir, W. A., Shaikh, T. A., Areen, T., Kashif, M., Khiani, S., & Hussain, A. (2024). An Intelligent Healthcare System for Automated Diabetes Diagnosis and Prediction using Machine Learning. Procedia Computer Science, 235, 2476–2485. https://doi.org/10.1016/j.procs.2024.04.233

Nita Cahyani, Rahmat Irsyada, & Rahmawati Mahmuda. (2024). Penerapan Algoritma Neural Network untuk Klasifikasi Diabetes Mellitus: Perbandingan Backpropagation dan Resilient Backpropagation. Digital Transformation Technology (Digitech) , Vol. 4, 1067–1074.

Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance Analysis of Data Mining Classification Techniques to Predict Diabetes. Procedia Computer Science, 82, 115–121. https://doi.org/10.1016/j.procs.2016.04.016

Pinem, T. H., & Putra, Z. P. (2025). Evaluasi Kinerja Algoritma Klasifikasi Deep Learning dalam Prediksi Diabetes. Jurnal Ilmiah FIFO, 17(1), 17. https://doi.org/10.22441/fifo.2025.v17i1.003

Rabie, O., Alghazzawi, D., Asghar, J., Saddozai, F. K., & Asghar, M. Z. (2022). A Decision Support System for Diagnosing Diabetes Using Deep Neural Network. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.861062

Rahman, M. (n.d.). Prediksi Pembayaran Tagihan Listrik Menggunakan Model Artificial Neural Network.

Sisodia, D., & Sisodia, D. S. (2018). Prediction of Diabetes using Classification Algorithms. Procedia Computer Science, 132, 1578–1585. https://doi.org/10.1016/j.procs.2018.05.122

Sutrisno, & Jupon. (2024). AnalisaKlasifikasi Penyakit Diabetesdengan Algoritma Neural Network. Bit-Tech(Binary Digital -Technology), 6, 304–310.

Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., & Tang, H. (2018). Predicting Diabetes Mellitus With Machine Learning Techniques. Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00515

Dimas Fauzan. (2023). Diabetes Prediction. Kaggle. https://www.kaggle.com/code/dimza300/diabetes-prediction/input?select=Training.csv diakses pada 16 Desember 2025

Published

2025-12-22

Issue

Section

Articles

How to Cite

Sukma Ayu Andini, Hasbi Firmansyah, Wahyu Asriyani, & Eko Budiraharjo. (2025). Prediksi Risiko Diabetes Mellitus Menggunakan Algoritma Neural Network. Jejak Digital: Jurnal Ilmiah Multidisiplin, 2(1), 843-853. https://doi.org/10.63822/1kgj8h92